Algorithm- 2

Computer Science Department

Iterative

- Control structure that repeats a set of actions (loop body) while some condition remains true or until some condition becomes false

(1)
WHILE condition
actions
END WHILE

(3)

FOR iteration bounds actions

END FOR
(2)

REPEAT
actions
UNTILE condition

Definite and Indefinite Loops

Looping may be achieved using either a definite loop or an indefinite loop:

- A definite loop is also referred to as a counter-controlled loop
\rightarrow The loop body will be executed a specific number of times.
- An indefinite loop is also referred to as a sentinel-controlled loop
\rightarrow The number of times the body of the loop should be executed can be different for each run of a program

Understanding the Loop in a Program's Mainline Logic

- Three steps that should occur in every properly functioning loop
-Initialize the variable that will control the loop (sentinel or counter value)
-Test the condition to determine whether the loop body executes
-Update (aka alter) the loop control variable
- increment/decrement the Icv
- get a new input value to compare to the sentinel value

Using a Counter-Controlled while loop

- As long as a boolean expression (the condition) remains true, the while loop's body executes.
- Essential Steps:
-Create and initialize a loop control variable (Icv)
-Determine the upper or lower limit for the Icv
-Determine the step (increment or decrement) for the Icv
-Determine the boolean expression (condition) that will control the loop
-Each iteration of the loop, update the Icv

Counter Controlled While Loop

Set i equal to two
While i less than or equal six print i
add two to i
end while

Output:
246

Using a Definite (Counter-Controlled) Loop

Using an Indefinite Loop (Sentinel-Controlled) with a Sentinel Value

- Indefinite loop
- May be performed a different number of times each time the program executes
- Essential steps:
- Identify a sentinel value (value outside the range of valid input data) that will be used as the loop exit condition
- name = QUIT //where QUIT is a named constant sentinel value
- End_of_input //RAPTOR sentinel module expression
- Java \rightarrow hasNext() $==$ false //Java method to evaluate end of input condition
- Each iteration of the loop get a new input value to compare to the sentinel value.

Example: Sentinel controlled indefinite loop

Common Loop Mistakes

- Neglecting to initialize the loop control variable
- Neglecting to update the loop control variable
- Loop executes one too many or one too few times
- operator: < or <= OR > or >=
- number of iterations = Last used - First used + 1
- Including statements inside the loop that belong outside the loop

Incorrect logic: Icv initialization is missing

Incorrect logic: Icv is not altered

Counter Controlled - avg.

- Write an algorithm to calculate the average of a set of 10 students.

Solution 1

1. Set counter to zero
2. Set total to zero
3. While counter is less than ten

Ask user to enter grade
Read grade and save as gd
Add gd into the total
increment counter
end while
4. Set the average to the total divided by counter
5. Print "the average is " average

Solution 2
1.Set counter to one
2.Set total to zero
3. While counter is less than or equalten

Ask user to enter grade
Read grade and save as gd
Add the gd into the total
increment counter
end while
4. Set the average to the total divided by 10
5. Print "the average is " average

Please solve q1 page 12 -
sentinel controlled avg

Example 4

Write an algorithm that will count the number of student pass in a class and the amount failed. The pass mark is more than or equal to 65. Suppose the number of students are 52 . The algorithm should output the amount failand passed.

Example 4 - cont.

1. Set counter to zero
2. Set numberOfStudents to 52
3. Set passCounter to zero
4. Set failureCounter to zero
5. While counter less than numberOfStudents

Ask user to enter student mark
Read mark and save as mk
if mk greater than or equal sixty five then
increment passCounter
else
increment failureCounter
end if

6. Print "pass counter =" passCounter "and failure counter =" failureCounter

Please solve q2 page 12 - sentinel

Using a for Loop

- for statement or for loop is a definite loop
- specifically, it is a pre-test loop
- Puts all of the loop control expressions in the for loop header:

1. Initialize
2. Test
3. Update

- Takes the form: [initial, final]
for loopControlVariable = initialValue to finalValue [step stepValue] do something endfor

Using a for Loop - cont.

- Example pseudocode for loop

```
for count = 0 to 3 step 1
                                    [0,3]
    output "Hello"
end for
```

- Initializes count to 0
- Checks count against the limit value 3 (test)
- If evaluation is true, for statement body prints the label
- Executes 4 times (last=3, first=0, 3-0+1 equals 4)
- Increases count by 1 (update)
- while loop:
- count $=0$
- while count <=3 or while count <4
- Java for loop: for (count=0; count $<=3$; count $+=1$)

Iterative - Repeat

1. Set j equal to negative five
2. Repeat
print ${ }^{j}$
increment j
until j less than or equal to zero

Output:

$$
\begin{array}{lllllll}
-5 & -4 & 3 & -2 & -1 & 0
\end{array}
$$

Write an algorithm to print the sum of the digits of a given number

Input a Number
Initialize Sum to zero
While Number is not zero
Get Remainder by Number Mod 10
Add Remainder to Sum
Divide Number by 10
\section*{End While}
Print Sum

Lab 3-12: Factorial

Factorial function is defined as:

- If $\mathrm{N}=0$ then $\mathrm{N}!=1$
- If $\mathrm{N}>0$ then $\mathrm{N}!=\mathrm{N}(\mathrm{N}-1)$

1. Ask user to enter N
2. Read N
3. Set Fact = 1
4. If N equals 0 then

Set Fact = 1
Else
While N not equal 0
Set Fact $=$ Fact $^{*} N$
$\mathrm{N}=\mathrm{N}-1$
End While
End If
5. Print Fact
$0!=1$
$1!=1$
$2!=1.2=2$
$3!=1 \cdot 2.3=6$
$4!=1 \cdot 2 \cdot 3 \cdot 4=24$
$5!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5=120$
$6!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6=720$
$\angle A B$: Write an algorithm to calculate and print the nth power of a number.
If the user enters the number= 8 and $n=3$, the algorithm should calculate the value of $8^{3}=8^{\star} 8^{*} 8$ and print the result which is 512

Read base number as base
 Read exponent as exponent Set result to 1
 while exponent not equal 0 result = result * base decrement exponent
 End While Print result

Write an algorithm to print the sum of the following series , taking the first 7 terms. use only one loop. $A=1!+2!+3!+4!+5!+6!+7$!

Set oldFact equal to one
Set counter equal to one
Set sum equal to zero
While counter in less than eight
Set oldFact equal to oldFact multiply by counter
Set sum equal to sum added by oldFact
Increment counter
End while
Print sum

LAB: Write an algorithm to check if the number is prime or not

Input Any integer number (num)
Output Is it a prime number or Not
1 Set i to 2
2 While i less than or equal num/2
3 if num modi=0
4 print "Not a Prime number" and exit;
5 Increment i by 1
6 If (i is equal (num/2)+1)
7 print "Prime number"

Counter-Controlled while loop- Example 1

Write an Algorithm to reverse digits of an integer
Input: num
(1) Initialize rev $=0$
(2) Loop while num >0
(a) Multiply rev by 10 and add remainder of num to rev
(rev = rev*10 + num\%10)
(b) Divide num by 10
($n u m=n u m / 10$)
(3) Return rev

